Computer-aided diagnosis of breast microcalcifications based on dual-tree complex wavelet transform
نویسندگان
چکیده
BACKGROUND Digital mammography is the most reliable imaging modality for breast carcinoma diagnosis and breast micro-calcifications is regarded as one of the most important signs on imaging diagnosis. In this paper, a computer-aided diagnosis (CAD) system is presented for breast micro-calcifications based on dual-tree complex wavelet transform (DT-CWT) to facilitate radiologists like double reading. METHODS Firstly, 25 abnormal ROIs were extracted according to the center and diameter of the lesions manually and 25 normal ROIs were selected randomly. Then micro-calcifications were segmented by combining space and frequency domain techniques. We extracted three texture features based on wavelet (Haar, DB4, DT-CWT) transform. Totally 14 descriptors were introduced to define the characteristics of the suspicious micro-calcifications. Principal Component Analysis (PCA) was used to transform these descriptors to a compact and efficient vector expression. Support Vector Machine (SVM) classifier was used to classify potential micro-calcifications. Finally, we used the receiver operating characteristic (ROC) curve and free-response operating characteristic (FROC) curve to evaluate the performance of the CAD system. RESULTS The results of SVM classifications based on different wavelets shows DT-CWT has a better performance. Compared with other results, DT-CWT method achieved an accuracy of 96% and 100% for the classification of normal and abnormal ROIs, and the classification of benign and malignant micro-calcifications respectively. In FROC analysis, our CAD system for clinical dataset detection achieved a sensitivity of 83.5% at a false positive per image of 1.85. CONCLUSIONS Compared with general wavelets, DT-CWT could describe the features more effectively, and our CAD system had a competitive performance.
منابع مشابه
Detection of Microcalcification in Digital Mammograms Using One Dimensional Wavelet Transform
Mammography is the most efficient method for breast cancer early detection. Clusters of microcalcifications are the early sign of breast cancer and their detection is the key to improve prognosis of breast cancer. Microcalcifications appear in mammogram image as tiny localized granular points, which is often difficult to detect by naked eye because of their small size. Automatic and accurately ...
متن کاملImage inpainting using complex 2-D dual-tree wavelet transform
The dual-tree complex wavelet transform is a useful tool in signal and image processing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpainting problem. Our approach is based on Cai, Chan, Shen and Shen’s framelet-based algorithm. The complex wavelet transform outperforms the standard real wavelet transform in the sense of shift-invariance, di...
متن کاملImproving the performance of neural network in differentiation of breast tumors using wavelet transformation on dynamic MRI
ABSTRACT Background: A computer aided diagnosis system was established using the wavelet transform and neural network to differentiate malignant from benign in a group of patients with histo-pathologically proved breast lesions based on the data derived independently from time-intensity profile. Materials and Methods: The performance of the artificial neural network (ANN) was evaluated u...
متن کاملWavelets Study for better multiresolution analysis in CAD of Microcalcification
Wavelets have enjoyed a widespread exposure in applications of image processing and computer vision. So mush so that wavelet is widely used in medical applications as the computer aided detection of microcalcifications in mammograms. A several types of wavelet transforms were employed in algorithms to achieve automated detection of microcalcifications. In this work we present a comparative stud...
متن کاملAutomatic detection of clustered microcalcifications in digital mammograms using an SVM classifier
In this paper we investigate the performance of a Computer Aided Diagnosis (CAD) system for the detection of clustered microcalcifications in mammograms. Our detection algorithm consists on the combination of two different methods. The first one, based on difference-image techniques and gaussianity statistical tests, finds out the most obvious signals. The second one is able to discover more su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2012